🔎 | ⎙ |
Solar radiation collection with high concentration level, high optical efficiency and spectrum splitting.The cost item in photovoltaic solar panels is the amount of photovoltaic material used. A concentrator reduces the amount of material used by concentrating the photons to fall on a much smaller area. If the geometric concentration level is 500, then the amount of material required is reduced by a factor of 500. The accuracy of tracking to keep the light focused on the solar cell increases with concentration level. Optical efficiency decreases as the concentration level increased.
Fresnel lens are commonly used to focus the photons. The cell is placed between the fresnel lens and the focus. If the area of the fresnel lens is A and the area of the cell is R, then the concentration level C is A/R. At concentration level C the cell is placed F/sqrt(C) distance from the focus, where F is the focal length. There are losses every time light is refracted or reflected. To simplify discussion these losses are not considered here.
Various technologies (secondary optical elements, secondary flux modifiers, homogenizer, TIR-R Total Internal Refraction and Refraction) are used to make the concentrated light more uniform in intensity and color.
Multi junction devices are more efficient because they capture a larger portion of the solar spectrum by layering single junction cells of decreasing band gap. The top layer has the highest band gap. The theoretical efficiency (before optical and other losses) increases as the number of junctions is increased, reaching 86% for infinite number of junctions. A severe limitation of MJ cells is that the photocurrent produced by each layer must be matched because each layer is connected in series and the maximum current is limited by that produced by the weakest layer. Another limitation of MJ cells is that each layer must be optically transparent to allow the photons that it cannot use to pass to the layer below.
Mirrors can be placed on the heat sink behind the first and second solar cell to reflect back light from the second and three solar cells to increase efficiency further.
Light concentrated by reflectors also have the same problem with non-uniform intensity that is also solved by using the light at both the front and back focus. Reflective concentrators produces uniform color flux, which makes them more suitable for use with MJ (Multijunction) cells.
The program calculates the parameters so that about a third of the energy falls on the first cell. The two cells are divided into 35 slices. The width of both cells is 150mm.
Total available energy 777 Watts
fresnelx w1000 g2500 l1000 r12 c11:75 c36:75 e97.5 777.37W/m2 refractive index at 589.2nm(1.492) m(20), eff(97.500%) SunHalfAngle(0.26657o) Total input energy 777 Watts Acrylic Fresnel Lens Width 1000mm x 0.150mm, Area 1.00m2, Focal Length 1000mm (f/1.000), 2500 grooves Slice Radius Power Tot Tot QEff Ix Ax Area UV BlueGreen Red NIR IR 390 492 622 760 1110 4000 mm W W % % cm2 % % % % % % Cell 1 Concentration Level 4.3x, distance from lens 516.6mm, 0.52f, radius 272.7mm 0 9.0 21.1 21 3 53 106 106 3 3 14 21 19 29 14 1 15.6 21.1 42 5 53 53 71 5 3 14 21 19 29 14 2 22.2 21.1 63 8 53 35 52 8 3 14 21 19 29 14 3 28.8 21.1 84 11 53 26 42 11 3 14 21 19 29 14 4 35.4 21.1 105 14 53 20 34 13 3 14 21 19 29 14 5 42.0 21.1 126 16 53 17 29 16 3 14 21 19 29 14 6 48.6 21.1 147 19 53 14 26 19 3 14 21 19 29 14 7 55.2 21.1 168 22 53 13 23 22 3 14 21 19 29 14 8 61.8 21.1 189 24 53 11 20 24 3 14 21 19 29 14 9 68.4 21.1 211 27 53 10 18 27 3 14 21 19 29 14 10 75.0 21.1 232 30 53 9 17 30 3 14 21 19 29 14 Cell 2 Concentration Level 38.5x, distance from lens 1161.3mm, 1.16f, radius 91.0mm, Center hole radius 75.0mm 11 18.2 21.1 253 33 50 26 17 10 0 0 0 13 50 37 12 20.6 21.1 274 35 56 91 19 3 0 0 15 24 40 21 13 22.7 21.1 295 38 55 93 20 3 0 4 21 21 36 19 14 24.7 21.1 316 41 54 90 21 3 0 9 20 20 34 18 15 26.7 21.1 337 43 53 87 22 3 0 11 19 20 33 17 16 28.6 21.1 358 46 53 83 23 3 2 10 18 19 33 17 17 30.4 21.1 379 49 53 78 24 3 2 10 18 19 33 18 18 32.3 21.1 400 51 53 75 25 4 2 10 18 19 33 18 19 34.1 21.1 421 54 53 72 25 4 2 10 18 19 33 18 20 35.9 21.1 442 57 53 69 26 4 2 10 18 19 33 19 21 37.6 21.1 463 60 52 67 27 4 2 10 18 19 33 19 22 39.4 21.1 484 62 52 65 28 4 2 9 17 19 33 20 23 41.0 21.1 505 65 52 64 28 4 2 9 17 18 34 20 24 42.7 21.1 526 68 52 63 29 4 2 9 17 18 34 21 25 44.3 21.1 547 70 51 62 30 4 2 9 16 18 34 22 26 45.8 21.1 568 73 50 63 30 4 1 8 15 17 34 24 27 47.3 21.1 590 76 52 60 31 4 1 8 16 18 35 22 28 49.0 21.1 611 79 56 55 31 5 2 9 17 19 39 15 29 50.8 21.1 632 81 66 48 32 6 2 10 18 21 46 3 30 52.8 21.1 653 84 64 40 32 7 2 11 21 25 41 0 31 55.2 21.1 674 87 60 34 32 8 2 13 25 30 31 0 32 58.1 21.1 695 89 56 27 32 10 3 15 30 37 14 0 33 61.7 21.1 716 92 52 20 31 14 3 20 39 38 0 0 34 66.7 21.1 737 95 48 13 30 20 4 27 54 14 0 0 35 75.0 21.1 758 98 44 7 28 37 7 43 49 0 0 0 36 116.1 19.4 777 100 38 1 17 247 25 68 6 0 0 0 Another example using a 4 x 4 array of 1500mm x 1500mm Fresnel lenses of four different types to construct a 36m2 Fresnel lens system with a focal length of 5012mm. The solar cell 1 consist of 48 circular slices of silicon. The 48 slices are connected in series from the centre to the edge to produce 28.8 volts. Increased voltage (or lower current) may be generated by increasing the number of slices. The width of each slice is made proportional to the light energy expected at its distance from the centre, so that the current produced by each strip is the same. Slice 35 and 36 are not used because the light intensity is too low and too much material will be required to collect it.
fresnelx w6000 g6000 l5012 r13 R25 c12:75 c24:100 c34:100 e99 777.37W/m2 refractive index at 589.2nm(1.492) m(20), eff(99.000%) SunHalfAngle(0.26657o) Total input energy 27985 Watts Acrylic Fresnel Lens Width 6000mm x 0.405mm, Area 36.00m2, Focal Length 5012mm (f/0.835), 6000 grooves Slice Radius Power Tot Tot QEff Ix Ax Area UV BlueGreen Red NIR IR 390 492 622 760 1110 4000 mm W W % % cm2 % % % % % % Cell 1 Concentration Level 343.8x, distance from lens 4741.7mm, 0.95f, radius 182.6mm 0 26.1 769.6 770 3 49 464 464 21 16 19 20 15 21 9 1 30.4 769.6 1539 6 51 1295 683 8 10 20 21 17 22 10 2 34.7 769.6 2309 8 50 1128 787 9 11 20 21 16 22 10 3 38.9 769.6 3078 11 50 1009 833 10 12 20 21 16 21 9 4 43.1 769.7 3848 14 50 914 848 11 14 20 20 16 21 9 5 47.3 769.6 4618 17 50 823 843 12 13 20 20 16 21 9 6 51.6 769.6 5387 19 50 741 827 13 11 22 20 16 21 9 7 56.1 769.6 6157 22 50 659 802 15 8 24 21 16 22 10 8 60.6 769.6 6927 25 51 599 773 17 3 28 21 16 22 10 9 65.2 769.6 7696 28 51 539 740 18 0 29 22 17 22 10 10 70.0 769.6 8466 30 51 486 707 20 0 28 22 17 23 10 11 75.0 769.7 9235 33 52 438 672 23 0 26 23 18 24 10 Cell 3 Concentration Level 162.3x, distance from lens 5405.4mm, 1.08f, radius 265.7mm 12 23.9 769.6 10005 36 37 553 661 18 0 0 0 0 43 57 13 31.7 769.6 10775 39 52 720 665 14 0 0 0 9 56 36 14 37.9 769.6 11544 41 50 729 669 14 0 0 0 19 47 35 15 42.5 769.6 12314 44 42 858 678 12 0 0 1 18 36 45 16 45.9 769.6 13084 47 33 1065 693 9 0 0 3 13 29 56 17 49.6 769.6 13853 50 45 886 702 11 0 0 5 15 40 40 18 52.7 769.6 14623 52 44 979 712 10 0 0 4 13 40 44 19 56.8 769.6 15392 55 61 711 712 14 0 0 0 15 61 24 20 61.1 769.6 16162 58 84 614 707 16 0 0 0 8 90 1 21 67.0 769.6 16932 61 84 421 686 24 0 0 0 2 98 0 22 75.7 769.6 17701 63 80 255 639 39 0 0 0 0 100 0 23 100.0 769.6 18471 66 74 74 484 134 0 0 0 7 93 0 Cell 2 Concentration Level 365.3x, distance from lens 5274.2mm, 1.05f, radius 177.1mm, Center hole radius 25.5mm 24 28.9 769.6 19241 69 62 1700 475 6 0 0 10 35 46 9 25 32.8 769.6 20010 72 59 1305 487 8 0 0 14 52 25 10 26 37.0 769.6 20780 74 56 1061 497 9 0 0 18 71 1 10 27 41.9 769.6 21549 77 54 821 504 12 0 0 24 66 0 10 28 47.4 769.6 22319 80 53 642 508 15 0 0 30 61 0 9 29 53.8 769.6 23089 83 53 483 507 20 0 2 38 55 0 6 30 61.6 769.6 23858 85 52 353 500 28 0 5 49 42 0 4 31 71.3 769.6 24628 88 52 244 484 41 0 10 76 13 0 1 32 83.6 769.6 25398 91 50 165 457 60 0 17 83 0 0 0 33 100.0 769.6 26167 94 47 105 416 95 0 26 74 0 0 0 34 124.4 769.6 26937 96 45 58 353 172 0 42 58 0 0 0 35 173.1 769.6 27706 99 42 22 248 455 0 80 20 0 0 0 36 253.3 278.7 27985 100 40 3 143 1074 0 100 0 0 0 0
Initial application will be in solar farms in regions with high direct insolation to efficiently supply loads up to 7000km away with underground high voltage DC (HVDC) transmission lines. With this method, the major cost item is shifted from the solar cells to the fresnel lens. The cost of the fresnel lens can be reduce by making them as thin as possible. The land below this type of solar concentrator can still be used, because the diffused background light cannot be focused. Example of such land are parks, car parks, over roads (when we stop using pollution causing cars), cycle ways, schools, shops, residential and degraded land. This method will very efficiently in extracting the direct UV and Infra-red radiation. Concentrated solar power can be very dangerous, take care. Wind load will become a problem as the size of the fresnel lens gets bigger and higher. Philip Wong BSc BE(UNSW)
Fresnelx Calculates intensity and colour distribution of solar radiation falling on up to three surfaces. Run "fresnelx x" to see available commands. Concentrated Solar Thermal Power with Point Focus Fresnel lens and reflector Bifacial concentration on VMJ (Vertical Multijunction) solar cells Spectrum splitting concentration on to three solar cells LensFresnel Lens Manufacturer. fresneloptic.com Fresnel Lens Manufacturer. ntkj.co.jp 2.9m x 5m lens Fresnel Lens Distributor. 3dlens.com CellsSpectrolab Terrestrial Concentrator cells Indium Gallium Nitride Solar Cells TrackingPrecise Tracking. Precision Solar Technologies ReferencesOptical Design software. optenso.de Persistence of Vision Raytracer Reference Solar Spectral Irradiance: ASTM G-173
|